Existence, stability, and scattering of bright vortices in the cubic-quintic nonlinear Schrödinger equation

نویسندگان

  • Ronald M. Caplan
  • Ricardo Carretero-González
  • Panayotis G. Kevrekidis
  • Boris A. Malomed
چکیده

We revisit the topic of the existence and azimuthal modulational stability of solitary vortices (alias vortex solitons) in the twodimensional (2D) cubic–quintic nonlinear Schrödinger equation. We develop a semi-analytical approach, assuming that the vortex soliton is relatively narrow, which allows one to effectively split the full 2D equation into radial and azimuthal 1D equations. A variational approach is used to predict the radial shape of the vortex soliton, using the radial equation, yielding results very close to those obtained from numerical solutions. Previously known existence bounds for the solitary vortices are recovered by means of this approach. The 1D azimuthal equation of motion is used to analyze the modulational instability of the vortex solitons. The semi-analytical predictions – in particular, the critical intrinsic frequency of the vortex soliton at the instability border – are compared to systematic 2D simulations. We also compare our findings to those reported in earlier works, which featured some discrepancies. We then perform a detailed computational study of collisions between stable vortices with different topological charges. Borders between elastic and destructive collisions are identified. © 2012 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Existence of Bright Solitons in Cubic-Quintic Nonlinear Schrِdinger Equation with Inhomogeneous Nonlinearity

We give a proof of the existence of stationary bright soliton solutions of the cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity. By using bifurcation theory, we prove that the norm of the positive solution goes to zero as the parameter λ, called chemical potential in the Bose-Einstein condensates’ literature, tends to zero. Moreover, we solve the time-dependent cubic...

متن کامل

Chirped Self-similar Pulse Propagation in Cubic-quintic Media

We consider nonlinear propagation of optical pulses in a cubic-quintic nonlinear medium wherein the pulse propagation is governed by the generalized nonlinear Schrödinger equation with varying dispersion, nonlinearity and gain/loss. Using the self-similar analysis, we present the generation of chirped bright solitons in the anomalous dispersion regime as well as the normal dispersion regime und...

متن کامل

Stability of spinning ring solitons of the cubic-quintic nonlinear Schrödinger equation

We investigate stability of (2+1)-dimensional ring solitons of the nonlinear Schrödinger equation with focusing cubic and defocusing quintic nonlinearities. Computing eigenvalues of the linearised equation, we show that rings with spin (topological charge) s = 1 and s = 2 are linearly stable, provided that they are very broad. The stability regions occupy, respectively, 9% and 8% of the corresp...

متن کامل

Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity

We study the stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity obtained via a constrained variational approach. Two important physical models are Gross-Pitaevskii (GP) equation and cubic-quintic equation. First, under a non-degeneracy condition we prove a sharp instability criterion for 3D traveling waves of (GP), which had been conjectured in the...

متن کامل

On existence of dark solitons in cubic-quintic nonlinear Schrödinger equation with a periodic potential

A proof of existence of stationary dark soliton solutions of the cubic-quintic nonlinear Schrödinger equation with a periodic potential is given. It is based on the interpretation of the dark soliton as a heteroclinic on the Poincaré map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2012